

Brian Lubbers, DVM, PhD, DACVCP blubbers@vet.k-state.edu

Speaker Disclosure - Brian Lubbers

FINANCIAL DISCLOSURE:

- Employee Kansas State Veterinary Diagnostic Laboratory
- Speaker / Consulting Engagement Merck Animal Health; Boehringer Ingelheim Vetmedica
- · Research Support Merck Animal Health; Zoetis

UNLABELED/ UNAPPROVED USES DISCLOSURE:

NONE

** THERAPEUTIC USES DISCLOSURE:

 ANY reference to a therapeutic is for illustrative purposes and is NOT an endorsement of a specific product

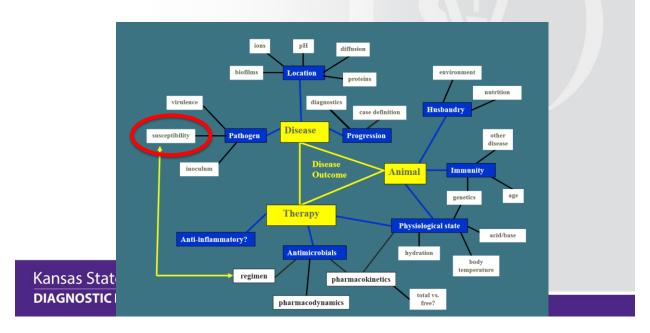
Other Disclosure

Much of this presentation is <u>MY PERSPECTIVE</u>, based on my training and experiences.

I do not presume to tell other laboratories how to operate. In fact, I would not encourage you to adopt / do anything that is outside your "comfort zone".

However, I encourage <u>OPEN DISCUSSION</u> about how we can all get better.....

MY PERSPECTIVE


- Clinical Veterinarian
- Clinical Pharmacologist
- Microbiology Laboratory Section Head
- CLSI VAST volunteer

From: OpenTip.com

What I want you to know from today

- The given factors that a veterinarian will consider when selecting an antimicrobial are NUMEROUS
 - There are opportunities for diagnostic labs to assist

5

What I want you to know from today

- CLSI is NOT a secretive organization conspiring against microbiology lab personnel
 - There are opportunities for diagnostic labs to assist

https://thoughtcatalog.com/jacob-geers/2016/04/creepy-stories-of-the-real-men-in-black/

Kansas State Veterinary

DIAGNOSTIC LABORATORY

What do you want to get from today?

Antibiotic Stewardship and Diagnostic Testing???

NATIONAL ACTION PLAN FOR COMBATING ANTIBIOTIC-RESISTANT BACTERIA

Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America

Tamar F. Barlam.** Sara E. Cosgrove.² Lilian M. Abbo,* Conan MacDougall.* Audrey N. Schuetz.* Edward J. Septimus.* Arjun Srinivasan,⁷ Timothy H. Dellit.* fagwt T. Falck-Yner, Neil O. Fishman.** Clindy W. Hamilton.** Timothy C. Jenkins.** Pamela A. Lipsett.** Preeti N. Malani,** Larissa S. May.** Gregory J. Moran,** Medinda M. Neubauser.** Josson G. Nevland.** Christopher A. Ohl.** Matthew H. Samore.** Susta, Soc.** and Kavitis K. Trivedi²²

The Core Elements of

Outpatient Antibiotic Stewardship

Antibiotic Stewardship in Veterinary Medicine

- Actions veterinarians take individually and as a profession to preserve the effectiveness and availability of antimicrobial drugs through conscientious oversight and responsible medical decisionmaking while safeguarding animal, public and environmental health.
- Core principles
 - Commit to stewardship
 - Advocate for a system of care to prevent common diseases
 - Select and use antimicrobials judiciously
 - Evaluate antimicrobial use practices
 - Educate and build expertise

STEWARDSHIP FALLS ON THE VETERINARIAN!!

https://www.avma.org/KB/Policies/Pages/Antimicrobial-Stewardship-Definition-and-Core-Principles.aspx

How veterinarians select antibiotics.....

• Is an antibiotic even necessary for this patient?

How veterinarians select antibiotics..... & how the micro lab can help!

• Is an antibiotic even necessary for this patient?

Specimen Desc: URINE

Organism Id: ESCHERICHIA COLI (NON-HEMOLYTIC)

Comments: -->10,000 cfu/ml

Received Date: February 20, 2018 Test Finalized: February 22, 2018

Update 1: 2/21/2018, No growth at this time.

Update 2: 2/22/2018, No growth.

	4			4.11	11
\vdash	VATARING	riane	CALACT	antihio	tics
	V C L C I II I C	มาตาเจ	301001	antible	1100

Is an antibiotic even necessary for this patient?

YES

How do veterinarians select the most appropriate antibiotic?

The "best" antimicrobial......

- is *Legal* to use in that patient,
- has a reasonable expectation of *Efficacy* and
- is reasonably Safe for the patient, the owner (or whoever is administering) and the end consumer (if the patient is a food animal).

The ideal antimicrobial is also **available** for prescribing, can be **readily administered** to the patient, is within the **financial constraints** of the owner and is **familiar** to the clinician.

1) Antimicrobial selection is NOT "cookie cutter"

2) It is a fluid process and requires consideration of the above in each and every case

Legal Use of Antimicrobials in Veterinary Medicine

- For food animals
 - Animal Medicinal Drug Use Clarification Act of 1994 [AMDUCA]
 - Animal Drug Availability Act of 1996
 - Veterinary Feed Directive
 - FDA Guidance 209
 - FDA Guidance 213
 - Compliance Policy Guide Sec 615.115

Legal Use of Antimicrobials in Veterinary Medicine & how the micro lab can help!

- Animal Medicinal Drug Use Clarification Act
 - 21 CFR Part 530.41
 - The following drugs, families of drugs, and substances are prohibited for extralabel animal and human drug uses in food-producing animals: (BVL note -- only antibiotics listed here)
 - 1. Chloramphenicol
 - 2. Dimetridazole
 - 3. Ipronidazole
 - 4. Other nitroimadazoles
 - 5. Furazolidone
 - 6. Nitrofurazone
 - 7. Glycopeptides

NEVER report for Food Animals

Legal Use of Antimicrobials in Veterinary Medicine & how the micro lab can help!

- Animal Medicinal Drug Use Clarification Act
 - 21 CFR Part 530.41
 - The following drugs, families of drugs, and substances are prohibited for extralabel animal and human drug uses in food-producing animals:
 - 1. Sulfonamide drugs in lactating dairy cattle
 - (except approved uses of sulfadimethoxine)
 - 2. Cephalosporins***
 - For disease prevention
 - Unapproved doses, routes, durations, frequencies
 - Not approved for that species / production class
 - 3. Fluoroquinolones

Conditionally report in Food Animals??

What about reporting aminoglycosides?

Aminoglycoside Use in Cattle and Small Ruminants

Due to food safety concerns from extended withdrawal times and associated drug residue risks, the AVMA does not support the use of aminoglycosides in cattle or small ruminants except those products specifically approved by FDA for use in cattle or small ruminants.

Comment on this policy (AVMA Members Only) Policy Under Review Spring 2018

Formerly titled "Aminoglycosides"

https://www.avma.org/KB/Policies/Pages/Aminoglycoside%20Use%20in%20Cattle%20and%20Small%20Ruminants.aspx

Legal Use of Antimicrobials in Veterinary Medicine

- What is a Food Animal?
 - Cattle, Swine, Chickens, Turkeys ☆
 - − Bear in zoo So
 - − Cervids ☆
 - Game birds (pheasant, chukar, quail)
 - Llama & alpaca S
 - Pot-bellied pigs ★
 - − Pygmy goats ☆
 - Rabbits ☆
 - Sheep & Goats ★
 - Wild bear ★

Kansas State Veterinary DIAGNOSTIC LABORATORY

Extracted from FDA Draft Guidance 210

Legal Use of Antimicrobials in Veterinary Medicine & how the micro lab can help!

- For companion animals
 - Animal Medicinal Drug Use Clarification Act of 1994
 - Veterinarian has virtually unlimited discretion currently, however......
 - Should we be reporting????
 - Carbepenems
 - Linezolid
 - Vancomycin

The "best" antimicrobial.....

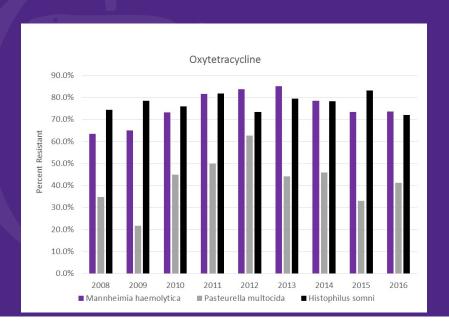
- is *Legal* to use in that patient,
- has a reasonable expectation of *Efficacy* and
- is reasonably **Safe** for the patient, the owner (or whoever is administering) and the end consumer (if the patient is a food animal).

The ideal antimicrobial is also **available** for prescribing, can be **readily administered** to the patient, is within the **financial constraints** of the owner and is **familiar** to the clinician.

1) Antimicrobial selection is NOT "cookie cutter"

2) It is a fluid process and requires consideration of the above in each and every case

What factors would a veterinarian use to support efficacy, or lack of & how the micro lab can help!


- Empiric therapy Before you have a pathogen identified
 - Antimicrobial spectrum
 - Site of infection
 - Cumulative antimicrobial susceptibility data
 - Non-response to prior therapy
- Definitive therapy You have a "target" pathogen
 - Intrinsic resistance
 - Antimicrobial label
 - Clinical trials
 - Individual antimicrobial susceptibility report
 - Non-response to prior therapy

Intrinsic Resistance / Clinical Inefficacy

- Inherent or innate -- not acquired -- resistance to an antimicrobial or antimicrobial class. Susceptibility testing is unnecessary in cases of intrinsic resistance [or result reporting should be reflective].
- Common veterinary intrinsic / clinical resistances
 - Proteus mirabilis: tetracycline, tigecycline, nitrofurantoin, polymixin B
 - Pseudomonas aeruginosa: amp/amoxicillin, amp-sulbactam, amoxiclavulanate, cefotaxime, ceftriaxone, ertapenem, tetra/tigecycline, trimethoprim, TMS-SMZ, chloramphenicol
 - Enterococcus spp.: cephalosporins, aminoglycosides, clindamycin, trimethoprim, TMS-SMZ, fusidic acid
 - Salmonella spp.: aminoglycosides, 1st/2nd generation cephalosporins (cefazolin, cephalexin), cephamycins
 - Anaerobes: aminoglycosides
- Appendix B in M100 / Appendix B in VET08

Kansas State Veterinary **DIAGNOSTIC LABORATORY**

Using Cumulative AST data to support efficacy

Standards for presenting cumulative AST data

- M39: Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data
- M39QG: Antibiograms: Developing Cumulative Reports for Your Clinicians

Analysis and Presentation of Cumulative Antibiograms: A New Consensus Guideline from the Clinical and Laboratory Standards Institute

Janet F. Hindler¹ and John Stelling²

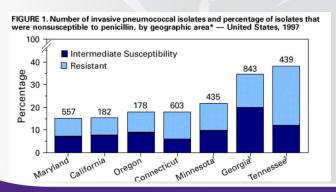
University of California Los Angeles Medical Center, Los Angeles; and ²Brigham and Women's Hospital, Boston, Massachusetts

Clinical Infectious Diseases. 2007. 44: 867-873.

 Cumulative AST data are often used in human healthcare (and veterinary medicine) to prescribe empirical antimicrobial therapy

Intermountain Healthcare Southern Region Rural Hospitals 2014 ANTIBIOGRAM																								
Gram Ne	Gram Negative Bacilli % Susceptible																							
# Tests	Species/Organism	Amikacin	Amoxicillin/Clavulanic Acid	Ampicillin	Ampicillin/Sulbactam	Aztreonam	Cefazolin	Cefepime	Cefotaxime	Cefoxitin	Ceftazidime	Ceftriaxone	Cefuroxime	Ciprofloxacin	Ertapenem	Gentamicin	Imipenem	Levofloxacin	Meropenem	Nitrofurantoin %%	Piperacillin/Tazobactam	Tetracycline	Tobramycin	Trimethoprim/Sulfamethoxazole
35	Citrobacter species	97	0	0	0	89	0	97	89	0	86	89	0	91	100	91	100	97	100	75	97	80	94	77
38	Enterobacter cloacae	100	0	0	0	89	0	97	95	0	89	89	0	100	100	97	100	100	_	11	89	87	97	89
787	Escherchia coli	99	83	58	62	97	88	98	98	93	98	98	94	85	100	94	100	85	100	98	97	79	95	78
45	Klebsiella oxytoca	100	98	0	74	93	44	100	100	91	100	100	93	93	100	100	100	96	100	76	100	87	100	87
131	Klebsiella pneumoniae	100	93	0	80	98	95	100	100	94	100	100	97	98	100	100	100	98	100	33	94	88	100	87
42	Proteus mirabilis	98	90	67	78	93	83	98	95	90	95	98	90	83	100	86	100	83	100	0	98	0	86	74
67	Pseudomonas aeruginos	a 94				82		94	0		94	0		91		84	96	93	99		97		99	

https://intermountainphysician.org/gw/Antibiograms 2/Rural% 202014.pdf


 <u>Caution</u>: extrapolation to an individual is only as good as the underlying patient population from which the cumulative data is drawn

Comparison of hospital-wide and age and location - stratified antibiograms of *S. aureus, E. coli,* and *S. pneumoniae*: age- and location-stratified antibiograms

Sanjeev K Swami¹ and Ritu Banerjee^{2*}

Conclusions: Stratified antibiograms reveal age - associated differences in susceptibility of *E. coli, S. aureus*, and *S. pneumoniae* that are obscured by hospital-wide antibiograms. Age-stratified antibiograms have potential to influence antibiotic selection.

Swami SK. 2013. Springerplus. 2; 63-67.

Kansas State Veterinary **DIAGNOSTIC LABORATORY**

CDC. 1999. MMWR. 48; 656-661.

underlying patient population from which the cumulative data is drawn

Cow-Calf (n=63 isolates)

Mannheimia haemolytica

Feedlot (n=229 isolates)

Number of Resistant Interpretations per Isolate

Mannheimia haemolytica

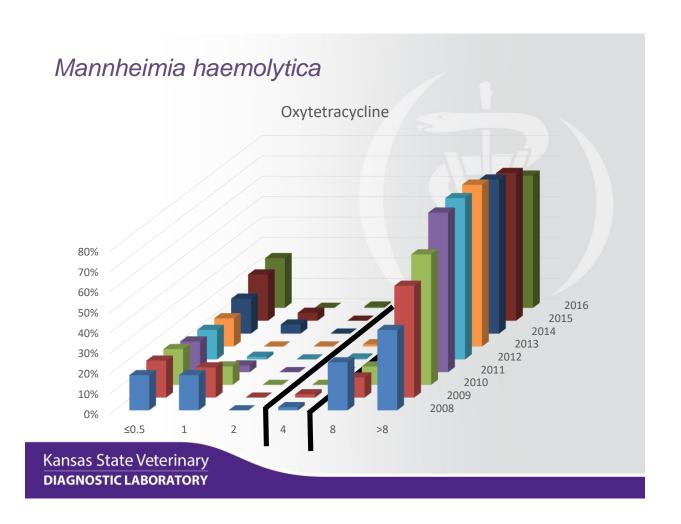
Number of Resistant Interpretations per Isolate

Caution: extrapolation to an individual is only as good as the

Kansas State Veterinary DIAGNOSTIC LABORATORY

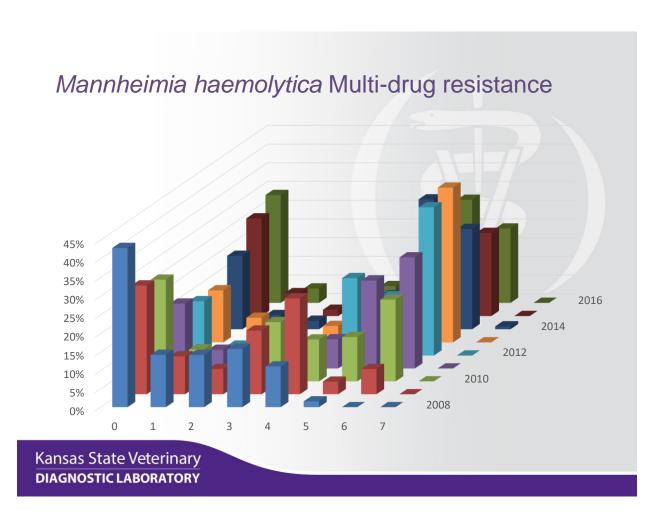
29

Cumulative AST summaries


- Summaries from KSVDL diagnostic submissions
 - Mannheimia haemolytica
 - Pasteurella multocida
 - Histophilus somni
 - Isolates recovered from bovine lung
 - Animal died of BRD
 - Likely received antimicrobial(s) ante-mortem
 - Antimicrebials

Ceftiofur, Enrofloxacin, Florfenicol, Oxytetracycline, Penicillin, Spectinomycin Tilmicosin

Kansas State Veterinary DIAGNOSTIC LABORATORY


WHY ONLY THESE?

Cumulative AST summaries

- Other uses....
 - Co-resistance / MDR
 - Cross-resistance

Mannheimia haemolytica (n=1550 isolates)

	>64			1		27	94	15	693	
	64				5	8	3	6	99	
Sin	32			8	4	1	3	4	53	
tilmicosin	16			46	44	5	1	1	16	
til	8		2	62	34	1	1	2		
	≤4	8	71	204	26		2			
		≤1	2	4	8	16	32	64	>64	
	tulathromycin									

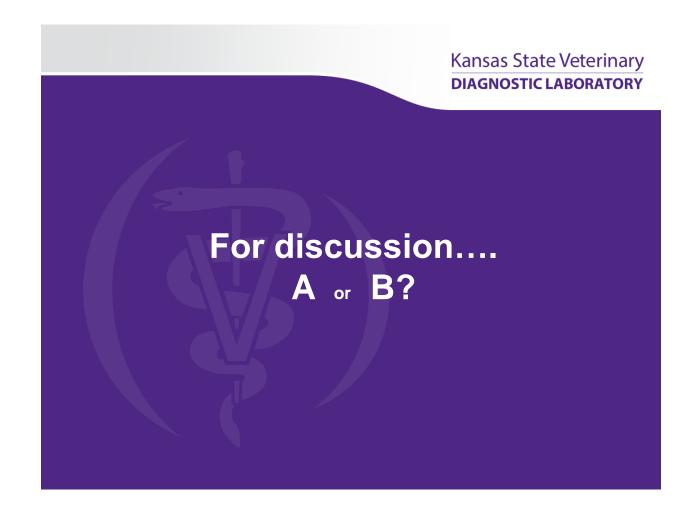
83% - S/S or I/I or R/R 3.6% - S/R mismatch

The "best" antimicrobial.....

- is *Legal* to use in that patient,
- has a reasonable expectation of *Efficacy* and
- is reasonably **Safe** for the patient, the owner (or whoever is administering) and the end consumer (if the patient is a food animal).

The ideal antimicrobial is also **available** for prescribing, can be **readily administered** to the patient, is within the **financial constraints** of the owner and is **familiar** to the clinician.

1) Antimicrobial selection is NOT "cookie cutter"


2) It is a fluid process and requires consideration of the above in each and every case

Patient safety......

and how the micro lab can help??

- Overt toxicities??
 - Where do you draw the line????
 - · Lincosamides in horses & rabbits
 - Tilmicosin (injectable) in pigs & goats
 - Sulfonamides in dogs
- AST results in alphabetical order????

	Interpretation	MIC	Test Range
AMIKACIN	S	<=4.0000	4 - 32
AMOXI/CLAV	S	<=0.1200	0.12 - 1

A or B?

History: Neonatal pot-bellied pig with diarrhea. E. coli isolated on culture.

	Interpretation	MIC	Test Range
AMPICILLIN	S	2.0000	0.25 - 16
CEFTIOFUR	NI	0.5000	0.25 - 8
CHLORTETRACYCLINE	NI	>8.0000	0.5 - 8
CLINDAMYCIN	NI	>16.0000	0.25 - 16
ENROFLOXACIN	NI	<=0.1200	0.12-2
FLORFENICOL	NI	2.0000	0.25-8
GENTAMICIN	S	<=1.0000	1-16
NEOMYCIN	NI	<=4.0000	4-32
OXYTETRACYCLINE	NI	>8.0000	0.5-8
PENICILLIN	NI	>8.0000	0.12-8
SPECTINOMYCIN	NI	16.0000	8-64
SULFADIMETHOXINE	NI	<=256.000 0	256
TIAMULIN	NI	>32.0000	0.5-32
TILMICOSIN	NI	64.0000	4-64
TRIMETH/SULFA	S	<=2.0000	2/38
TULATHROMYCIN	NI	8.0000	1-64
TYLOSIN TARTRATE	NI	>32.0000	0.5-32

	Interpretation	MIC	Test Range
AMIKACIN	S	<=4.0000	4 - 32
AMOXI/CLAV	S	<=0.1200	0.12 - 1
AMPICILLIN	NI		0.12 - 1
CEFAZOLIN	S	<=1.0000	1-8
CEFOVECIN	NI	<=0.2500	0.25 - 4
CEFOXITIN	S	<=2.0000	2 - 16
CEFPODOXIME	S	<=2.0000	2 - 16
CEFTIOFUR	S	<=0.2500	0.25 - 4
CEPHALOTHIN	S	<=2.0000	2-8
CHLORAMPHENICOL	S	<=4.0000	4 - 16
CLINDAMYCIN	S	<=0.5000	0.5 - 4
DOXYCYCLINE	S	<=2.0000	2-8
ENROFLOXACIN	S	<=0.2500	0.25 - 2
ERYTHROMYCIN	S	<=0.5000	0.5 - 4
GENTAMICIN	S	<=1.0000	1-8
IMIPENEM	S	2.0000	1-8
MARBOFLOXACIN	S	<=0.2500	0.25 - 2
OXACILLIN + 2% NACL	S	<=0.2500	0.25 - 4
PENICILLIN	NI		0.06 - 8
RIFAMPIN	NI	<=1.0000	1-2
TICAR/CLAV ACID	S	<=8.0000	8/2 - 64/2
TICARCILLIN	NI		8 - 64
TRIMETH/SULFA	S	<=0.5000	0.5/9.5 - 2/38

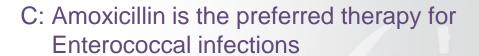
A: Pot bellied pigs are considered food animals – avoid reporting prohibited drugs

	Interpretation	MIC	Test Range
AMPICILLIN	S	2.0000	0.25 - 16
CEFTIOFUR	NI	0.5000	0.25 - 8
CHLORTETRACYCLINE	NI	>8.0000	0.5 - 8
CLINDAMYCIN	NI	>16.0000	0.25 - 16
ENROFLOXACIN	NI	<=D \ \d	0.12-2
FLORFENICOL	NI	d 000	0.25-8
GENTAMICIN	5/	=1.0000	1-16
NEOMYCIN		<=4.0000	4-32
OXYTETRACYCLINE		>8.0000	0.5-8
PENICILLIN	NI	>8.0000	0.12-8
SPECTINOMYCI	NI	16.0000	8-64
SULFADIMETHOXIN	NI	<=256.000 0	256
TIAMULIN	NI	>32.0000	0.5-32
TILMICOSIN	NI	64.0000	4-64
TRIMETH/SULFA	S	<=2.0000	2/38
TULATHROMYCIN	NI	8.0000	1-64
TYLOSIN TARTRATE	NI	>32.0000	0.5-32

	Interpretation	MIC	Test Range
AMIKACIN	S	<=4.0000	4 - 32
AMOXI/CLAV	S	<=0.1200	0.12 - 1
AMPICILLIN	NI		0.12 - 1
CEFAZOLIN	S	<=1.0000	1-8
CEFOVECIN	NI	<=0.2500	0.25 - 4
CEFOXITIN	S	<=2.0000	2 - 16
CEFPODOXIME	S	<=2.0000	2 - 16
CEFTIOFUR	S	<=0.2500	0.25 - 4
CEPHALOTHIN	S	<=2.0000	2-8
CHLORAMPHENICOL	S	<=4.0000	4 - 16
CLINDAMYCIN	S	<=0.5000	0.5 - 4
DOXYCYCLINE	S	<=2.0000	2-8
ENROFLOXACIN	S	<=0.2500	0.25 - 2
ERYTHROMYCIN	S	<=0.5000	0.5 - 4
GENTAMICIN	S	<=1.0000	1-8
IMIPENEM	S	2.0000	1-8
MARBOFLOXACIN	S	<=0.2500	0.25 - 2
OXACILLIN + 2% NACL	S	<=0.2500	0.25 - 4
PENICILLIN	NI		0.06 - 8
RIFAMPIN	NI	<=1.0000	1-2
TICAR/CLAV ACID	S	<=8.0000	8/2 - 64/2
TICARCILLIN	NI		8 - 64
TRIMETH/SULFA	S	<=0.5000	0.5/9.5 - 2/38

A or B?

History: 9 yr old DLH with clinical signs of UTI. *Enterococcus faecalis* isolated on culture.


Interpretation	MIC	Test Range
R		16-32
S	0.5000	0.25/0.12- 8/4
S	1.0000	0.25-8
S	<=8.0000	8-32
S	<=0.1200	0.12-0.5
1	1.0000	0.25-4
1	1.0000	0.25-4
R		4-16
S	<=1.0000	1-4
1	2.0000	1-4
S	<=0.5000	0.5-2
S	<=16.0000	16-64
NI	>2.0000	0.25-2
S	2.0000	0.06-8
NI	<=0.2500	0.25-2
S	<=1.0000	1-2
S	<=0.2500	0.25-1
S	2.0000	1-16
	R S S S S S S S S S S S S S S S S S S S	R S 0.5000 S 1.0000 S <-8.0000 S <-8.0000 I 1.0000 I 1.0000 R S <-1.0000 I 2.0000 S <-16.0000 NI >2.0000 NI <-0.2500 S <-1.0000 S <-1.0000 S <-0.2500 S <-1.0000 S <-0.2500 S <-1.0000 S <-0.2500

znecrococcao jaco		1	
	Interpretation	MIC	Test Range
AMIKACIN	R		16-32
AMOXI/CLAV	S	0.5000	0.25/0.12- 8/4
AMPICILLIN	S	1.0000	0.25-8
CEFAZOLIN	R	>4.0000	2-4
CEFOVECIN	NI	>8.0000	0.06-8
CEFPODOXIME	NI	4.0000	2-8
CEPHALOTHIN	NI	>4.0000	2-4
CHLORAMPHENICOL	S	<=8.0000	8-32
CLINDAMYCIN	NI	>4.0000	0.5-4
DOXYCYCLINE	S	<=0.1200	0.12-0.5
ENROFLOXACIN	- 1	1.0000	0.25-4
ERYTHROMYCIN	,1	1.0000	0.25-4
GENTAMICIN	R		4-16
IMIPENEM	S	<=1.0000	1-4
MARBOFLOXACIN	I	2.0000	1-4
MINOCYCLINE	S	<=0.5000	0.5-2
NITROFURATOIN	S	<=16.0000	16-64
OXACILLIN + 2% NACL	NI	>2.0000	0.25-2
PENICILLIN	S	2.0000	0.06-8
PRADOFLOXACIN	NI	<=0.2500	0.25-2
RIFAMPIN	S	<=1.0000	1-2
TETRACYCLINE	S	<=0.2500	0.25-1
TRIMETH/SULFA	NI	<=2.0000	2/38-4/76
VANCOMYCIN	S	2.0000	1-16

A: Enterococci are intrinsically resistant to aminoglycosides, cephalosporins, clindamycin, TMS

	Interpretation	MIC	Test Range
AMIKACIN	R		16-32
AMOXI/CLAV	S	0.5000	0.25/0.12- 8/4
AMPICILLIN	S	1.0000	0.25-8
CHLORAMPHENICOL	S	<=8.0000	8-32
DOXYCYCLINE	S	<=0.1200	0.12-0.5
ENROFLOXACIN	1	1.0000	0.25-4
ERYTHROMYCIN	1	1	0.25-4
GENTAMICIN	R		4-16
IMIPENEM	S/	1.0000	1-4
MARBOFLOXACIN		2.0000	1-4
MINOCYCLINE		<=0.5000	0.5-2
NITROFURATO	Ś	<=16.0000	16-64
OXACILLIN + 2% NA	NI	>2.0000	0.25-2
PENICILLIN	S	2.0000	0.06-8
PRADOFLOXACIN	NI	<=0.2500	0.25-2
RIFAMPIN	S	<=1.0000	1-2
TETRACYCLINE	S	<=0.2500	0.25-1
VANCOMYCIN	S	2.0000	1-16

	Interpretation	MIC	Test Range
AMIKACIN	R		16-32
AMOXI/CLAV	S	0.5000	0.25/0.12- 8/4
AMPICILLIN	S	1.0000	0.25-8
CEFAZOLIN	R	>4.0000	2-4
CEFOVECIN	NI	>8.0000	0.06-8
CEFPODOXIME	NI	4.0000	2-8
CEPHALOTHIN	NI	>4.0000	2-4
CHLORAMPHENICOL	S	<=8.0000	8-32
CLINDAMYCIN	NI	>4.0000	0.5-4
DOXYCYCLINE	S	<=0.1200	0.12-0.5
ENROFLOXACIN	1	1.0000	0.25-4
ERYTHROMYCIN	, I	1.0000	0.25-4
GENTAMICIN	R		4-16
IMIPENEM	S	<=1.0000	1-4
MARBOFLOXACIN	1	2.0000	1-4
MINOCYCLINE	S	<=0.5000	0.5-2
NITROFURATOIN	S	<=16.0000	16-64
OXACILLIN + 2% NACL	NI	>2.0000	0.25-2
PENICILLIN	S	2.0000	0.06-8
PRADOFLOXACIN	NI	<=0.2500	0.25-2
RIFAMPIN	S	<=1.0000	1-2
TETRACYCLINE	S	<=0.2500	0.25-1
TRIMETH/SULFA	NI	<=2.0000	2/38-4/76
VANCOMYCIN	S	2.0000	1-16

A or B?

History: Respiratory disease in an alpaca. Pasteurella multocida isolated on culture.

	Interpretation	MIC	Test Range
AMPICILLIN	R	8.0000	0.25 - 16
CEFTIOFUR	NI	>8.0000	0.25 - 8
CHLORTETRACYCLINE	NI	<=0.5000	0.5 - 8
CLINDAMYCIN	NI	>16.0000	0.25 - 16
DANOFLOXACIN	NI	0.2500	0.12 - 1
ENROFLOXACIN	NI	<=0.1200	0.12 - 2
FLORFENICOL	S	1.0000	0.25 - 8
GENTAMICIN	S	<=1.0000	1 - 16
NEOMYCIN	NI	<=4.0000	4 - 32
OXYTETRACYCLINE	NI	<=0.5000	0.5 - 8
PENICILLIN	NI	>8.0000	0.12 - 8
SPECTINOMYCIN	NI	>64.0000	8 - 64
SULFADIMETHOXINE	NI	>256.0000	256
TIAMULIN	NI	>32.0000	0.5 - 32
TILMICOSIN	NI	16.0000	4 - 64
TRIMETH/SULFA	S	<=2.0000	2/38
TULATHROMYCIN	S	2.0000	1 - 64
TYLOSIN TARTRATE	NI	>32.0000	0.5 - 32

	Interpretation	MIC	Test Range
AMPICILLIN	R	8.0000	0.25 - 16
CEFTIOFUR	NI	>8.0000	0.25 - 8
CHLORTETRACYCLINE	NI	<=0.5000	0.5 - 8
CLINDAMYCIN	NI	>16.0000	0.25 - 16
DANOFLOXACIN	NI	0.2500	0.12 - 1
ENROFLOXACIN	NI	<=0.1200	0.12 - 2
FLORFENICOL	S	1.0000	0.25 - 8
GENTAMICIN	S	<=1.0000	1 - 16
NEOMYCIN	NI	<=4.0000	4 - 32
OXYTETRACYCLINE	NI	<=0.5000	0.5 - 8
PENICILLIN	NI	>8.0000	0.12 - 8
SPECTINOMYCIN	NI	>64.0000	8 - 64
SULFADIMETHOXINE	NI	>256.0000	256
TIAMULIN	NI	>32.0000	0.5 - 32
TRIMETH/SULFA	S	<=2.0000	2/38
TULATHROMYCIN	S	2.0000	1 - 64
TYLOSIN TARTRATE	NI	>32.0000	0.5 - 32

Kansas State Veterinary

DIAGNOSTIC LABORATORY

B: Tilmicosin is potentially fatal in alpacas

	Interpretation	MIC	Test Range
AMPICILLIN	R	8.0000	0.25 - 16
CEFTIOFUR	NI	>8.0000	0.25 - 8
CHLORTETRACYCLINE	NI	<=0.5000	0.5 - 8
CLINDAMYCIN	NI	>16.0000	0.25 - 16
DANOFLOXACIN	NI	0.2500	0.12 - 1
ENROFLOXACIN	NI	<=0.1200	0.12 - 2
FLORFENICOL	S	1.0000	0.25 - 8
GENTAMICIN	S	<=1.0000	1 - 16
NEOMYCIN	NI	<=4.0000	4 - 32
OXYTETRACYCLINE	NI	<=0.5000	0.5 - 8
PENICILLIN	NI	>8.0000	0.12 - 8
SPECTINOMYCIN	NI	>64.0000	8 - 64
SULFADIMETHOXINE	NI	>256.0000	256
TIAMULIN	NI	>32.0000	0.5 - 32
TILMICOSIN	NI	16.0000	4 - 64
TRIMETH/SULFA	S	<=2.0000	2/38
TULATHROMYCIN	S	2.0000	1 - 64
TYLOSIN TARTRATE	NI	>32.0000	0.5 - 32

	Interpretation	MIC	Test Range
AMPICILLIN	R	8.0000	0.25 - 16
CEFTIOFUR	NI	>8.0000	0.25 - 8
CHLORTETRACYCLINE	NI	<=0.5000	0.5 - 8
CLINDAMYCIN	NI	>16.0000	25 - 16
DANOFLOXACIN	NI	1	0.12 - 1
ENROFLOXACIN	NI /	200	0.12 - 2
FLORFENICOL	S	.0000	0.25 - 8
GENTAMICIN		<=1.0000	1 - 16
NEOMYCIN		<=4.0000	4 - 32
OXYTETRACYCLINE		<=0.5000	0.5 - 8
PENICILLIN	NI	>8.0000	0.12 - 8
SPECTINOMYCIN	NI	>64.0000	8 - 64
SULFADIMETHOXINE	NI	>256.0000	256
TIAMULIN	NI	>32.0000	0.5 - 32
TRIMETH/SULFA	S	<=2.0000	2/38
TULATHROMYCIN	S	2.0000	1 - 64
TYLOSIN TARTRATE	NI	>32.0000	0.5 - 32

Kansas State Veterinary

DIAGNOSTIC LABORATORY

Questions? Discussion?

Dr. Brian Lubbers KSVDL 785-532-4012 blubbers@vet.k-state.edu

Developing Breakpoints

Breakpoint / Interpretive criteria

Minimal inhibitory concentration (MIC) used to indicate susceptible "S", intermediate "I" or resistant "R".

Susceptible

 Category implies an infection that may be appropriately treated with the dosage regimen of an antimicrobial agent recommended for that type of infection and infecting [bacterial] species [in that host animal species]

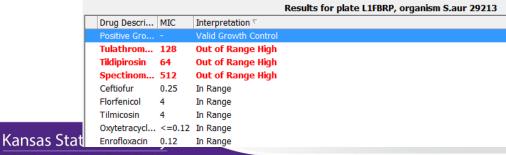
- Intermediate

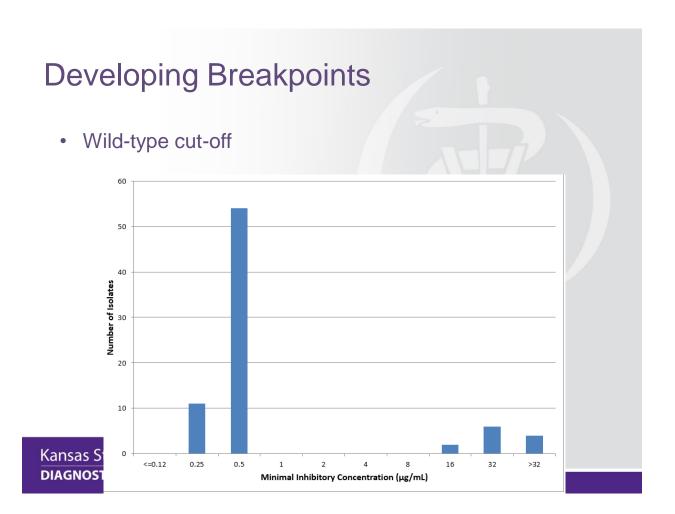
 Category implies an infection that may be appropriately treated in body sites where the drugs are physiologically concentrated, or when a high dosage of drug can be used

Resistant

 Strains [in this category] are not inhibited by the usually achievable concentrations of the agent with normal dosage schedules and/or fall in the range [of MICs] where specific microbial resistance mechanisms are likely and clinical outcome has not been predictable in effectiveness studies

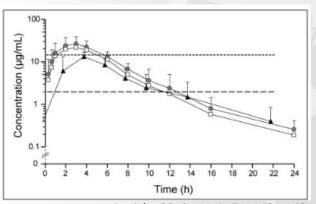
Developing Breakpoints


1. Reproducible method and QC


- 2. Data needed to set a <u>veterinary specific MIC</u> breakpoint
 - a) Wild-type cut-off
 - b) PK/PD cut-off
 - c) Clinical cut-off
- 3. MIC zone diameter correlation to set disk diffusion breakpoint

Does the Breakpoint still apply if.....

- Test conditions change....
 - Increase / decrease inoculum density
 - Incubate in CO₂
 - Use a different strength disk
 - Supplement testing media with serum
 - Someone stores dry ice (for a 4th of July party) in the -80 freezer that holds your custom frozen AST panels


DIAGNOSTIC LABORATORY

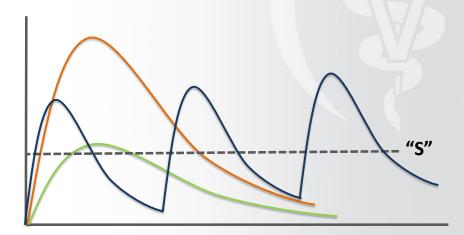
Does the Breakpoint still apply if..... • I change the organism or antibiotic? "S" Wansas State Veterinary DIAGNOSTIC LABORATORY

Developing Breakpoints

PK/PD cut-off

Papich. 2010. AJVR. 71; 1484-1491.

Table 4. Probability of target attainment (PTA) for administration of cephalexin oral to dogs using Monte Carlo simulations.

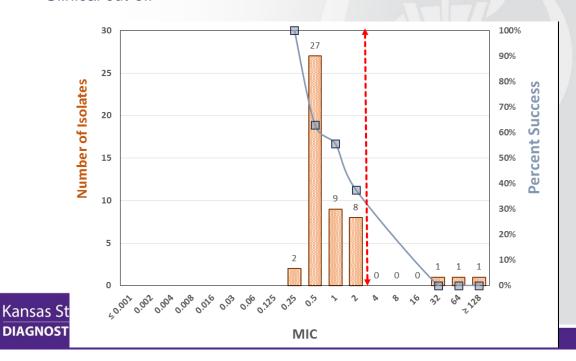

PTA from Monte Carlo simulation for the indicated MIC v					MIC values	values			
Drug and dose regimen	0.25	0.5	1	2	4	8	16	32	64
Cephalexin in dogs (25 mg/kg oral) every 12 h	98.7%	97.93%	94.8%	89.6%	72.9%	47.05%	14.03%	1.74%	0%

Kansas State Veterinary DIAGNOSTIC LABORATORY

Papich. 2018. JVDI. 30; 113-120.

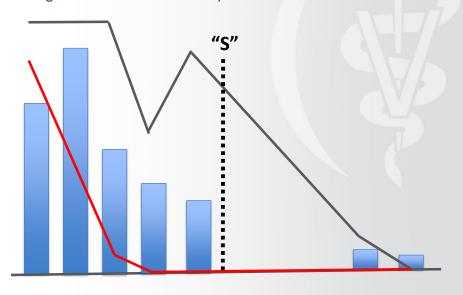
Does the Breakpoint still apply if......

- I change the antibiotic or the host species?
- I change the dosing regimen?


Does the Breakpoint still apply if......

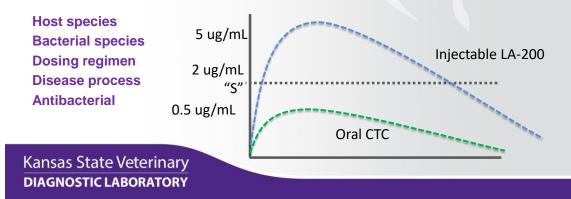
• I change to a different class of animal

Test/ Report	Body	Antimicrobial				Zone Diameter Interpretive Criteria (nearest whole mm)		MIC Interpretive Criteria (μg/mL)		Criteria	
Group	Site	Agent	Organism	Content	S	I	R	S	I	R	Comments
Aminoglycosides/Aminocyclitols											
Dogs											
A		Amikacin	E. coli	-	-	-	-	≤4	8	≥16	(5) Breakpoints derived from microbiological, PK (using accepted clinical doses), and PD data. For dogs, the dose of amikacin modeled was 15 mg/kg, every 24 hours IM, IV, or SC.
*		Gentamicin	Enterobacteriaceae	10 µg	≥16	13–15	≤12	≤2	4	≥8	(6) Breakpoints derived from microbiological, PK (using accepted clinical doses), and PD data. For dogs, the dose of gentamicin modeled was 10 mg/kg every 24 hours IM.
Horses (F	oals)										
A		Amikacin	E. coli	-	-	_	-	≤2	4	≥8	(7) Breakpoints derived from microbiological, PK (using accepted clinical doses), and PD data. For foals <11 days of age, the dose of amikacin modeled was 20 mg/kg, every 24 hours IV.
Horses (A	Adults) 🖊										
A)		Amikacin	E. coli	-	-	_	-	≤4	8	≥16	(8) Breakpoints derived from microbiological, PK (using accepted clinical doses), and PD data. For adult horses, the dose of amikacin modeled was 10 mg/kg, every 24 hours, IM or IV.


Developing Breakpoints

Clinical cut-off

Does the Breakpoint still apply if......


• I change the clinical disease process?

What do you think???

Most Dx labs report susceptibility summaries yearly. For example, Lab XYZ reported P. mult to be 85% susceptible to CTC. As I understand CLSI has not established an S-I-R for CTC, only for parentally administered tetracyclines. If this is correct, Dx labs shouldn't report a CTC S-I-R for P. mult. For parentally admin tetracyclines, the CLSI list 2 ug/ml as the MIC. If Dx labs are using 2.0 ug/ml at the MIC this is problematic in light of a 2009 Reinbold, et-al paper. [A 2009 study (REINBOLD, et-al. Plasma pharmacokinetics of oral chlortetracycline in group fed, ruminating, Holstein steers in a feedlot setting. J. vet. Pharmacol. Therap. 33, 76–83) demonstrated the C-Max for CTC was 0.5 ug/ml.]

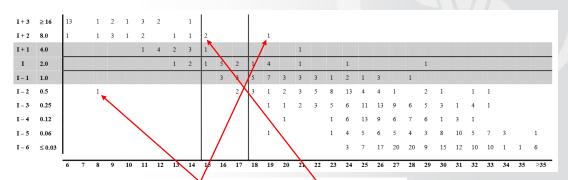
This makes me wonder if there is a disconnect between the CTC S-I-R Dx labs report for P mult and the pharmacokinetics of CTC in cattle.

"Generic" BPs

...and how the micro lab can help!

- Older antimicrobials unlikely that a single sponsor will bring forth data to support a veterinary specific BP
- Use available literature to support BP development
 - Wild-type cutoff
 - PK-PD cutoff
 - Clinical cutoff

This is often needed by the CLSI "generic" working group. Can diagnostic labs help with future BP development???


Why don't we have disk diffusion BPs?

- Disk diffusion BPs are developed by correlating the MIC to zone diameter using a process called "error rate bounding"
 - CLSI VET02
- MIC zone diameter correlation not available for most (any?)
 "generic" BPs

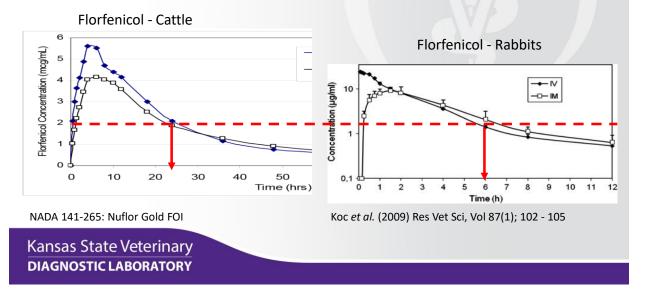
Developing (disk diffusion) Breakpoints

Table 1. Guideline for Acceptable Discrepancy Rates (With Intermediate Ranges) (see Note)

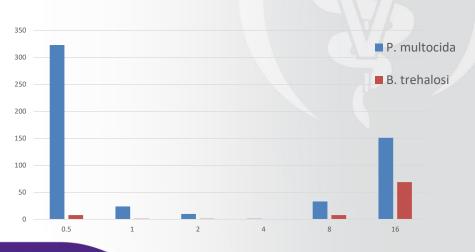
		Discrepancy Rates			
1-dilution Intermediate Range	2-dilution Intermediate Range	Very Major	Major	Minor	
≥ I+2	$\geq I_{High} + 2$	< 2%	N/A	< 5%	
I+1 to I-1	I _{High} +1 to I _{Low} -1	<10%	<10%	< 40%	
≤ I-2	$\leq I_{Low}-2$	N/A	<40%	< 5%	

	<u>Nu</u>	mber of Discrepanc	<u>ies (Discrepanc</u>	(<u>x Rate</u>)
MIC Range	<u>Number</u>	Very Major (%)	Major (%)	Minor (%)
\geq I + 2	36	$1(2.8)^{\dagger}$	NA	2 (5.6)
I + 1 to I - 1	66	1 (1.5)	0	18 (27.3)
$\leq I - 2$	393	NA	1 (0.3)	2 (0.5)
Total	495	2 (0.4)	1 (0.2)	22 (4.4)

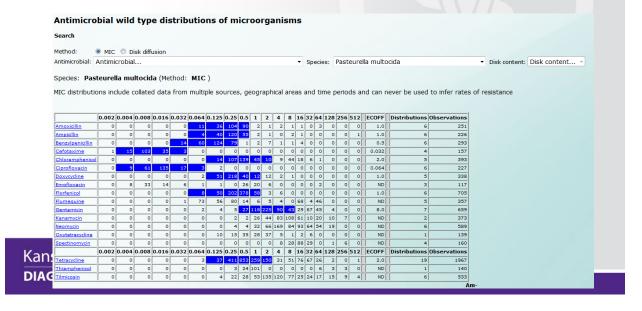
From CLSI M37 (now VET02)


I do not presume to tell other laboratories how to operate. In fact, I would not encourage you to adopt / do anything that is outside your "comfort zone".

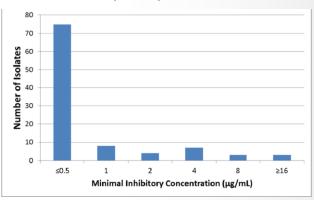
I do NOT put any of the following on a report or create system rules that would make my suggestions seem like real breakpoints. I will use any / all of the following, but it is done on a one-on-one basis with the individual clinician.


Most of these strategies are aimed at identifying "unreasonable" drug choices...

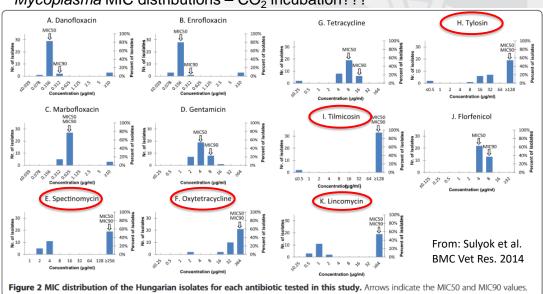
Rule-out drugs that won't work

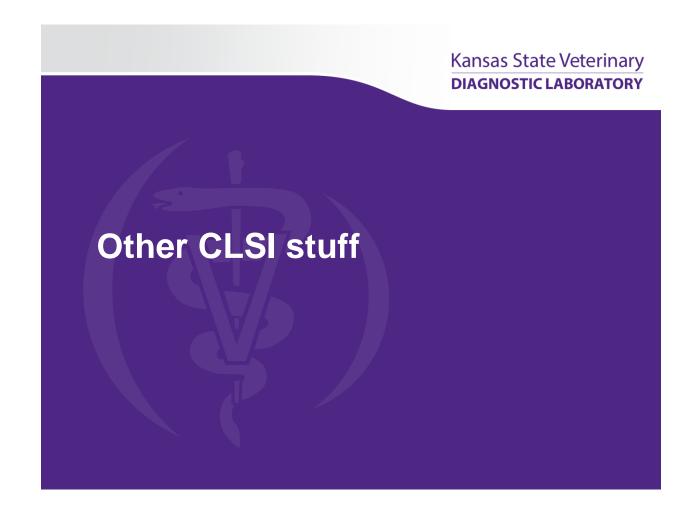

- 1. Extrapolate a breakpoint from another animal species for that antimicrobial pathogen combination
 - Historically, most common approach use of human breakpoints
 - Concern with differences in pharmacokinetics

- 2. Extrapolate a breakpoint from that host species and antimicrobial for another pathogen
 - Concern with MIC distribution match for the 2 bacterial species


- 3. Use an Epidemiological Cut-Off (ECV / ECOFF)
 - Not a clinical breakpoint, but may suggest if a resistance element is present

4. Use in-house data to create an ECV


Moraxella - Oxytetracycline MIC distribution


	MORAXELLA SP 1
AMPICILLIN	NI <=0.2500(0.25 - 16)
CEFTIOFUR	NI <=0.2500(0.25 - 8)
CHLORTETRACYCLINE	NI <=0.5000(0.5 - 8)
CLINDAMYCIN	NI 2.0000(0.25 - 16)
FLORFENICOL	NI 0.5000(0.25-8)
GENTAMICIN	S <=1.0000(1-16)
NEOMYCIN	NI <=4.0000(4-32)
OXYTETRACYCLINE	NI <=0.5000(0.5-8)
PENICILLIN	NI <=0.1200(0.12-8)
SPECTINOMYCIN	NI <=8.0000(8-64)
SULPHADIMETHOXINE	NI <=256.0000(256)
TIAMULIN	NI <=0.5000(0.5-32)
TILMICOSIN	NI <=4.0000(4-64)
TRIMETH/SULFA	S <=2.0000(2/38)
TULATHROMYCIN	NI <=1.0000(1-64)
TYLOSIN TARTRATE	NI 4.0000(0.5-32)

- · (Cautiously) Use published MIC distribution data
 - Attention to methodology

Mycoplasma MIC distributions - CO₂ incubation???

Kan **DIA**

- VAST is always looking for MIC distribution data
- Next meeting Jan 24-29, 2019 St. Augustine, FL
- New revision of VET01
- New revision of VET08
- VET09

Other Questions? Discussion?

Dr. Brian Lubbers KSVDL 785-532-4012 blubbers@vet.k-state.edu

